Physics practical (manipulation of data)

(write the solutions in your graph books)

- 1. The results below were obtained in an experiment to determine the mass, M_0 of a metre rule.
- a) $l_0 = 63.0 \text{ cm}$

x(cm)	y(cm)
5.0	49.8
10.0	50.9
15.0	52.0
20.0	53.1
25.0	54.5
30.0	55.4

- a) Draw table including values of $\frac{1}{x}$, (y x) and $(l_0 y)$.
- b) Plot a graph of (y x) against $(l_0 y)$.
- c) Find the slope, **S** of your graph.
- d) Calculate the mass, M_0 of the metre rule from the expression.

$$M_0 = 50 \times S$$

- 2. The results below were obtained in an experiment to determine the focal length f, the curved mirror.
- a) $f_1 = 10.0$ cm
- b)

χ (cm)	y(cm)
20.0	19.8
24.0	17.1
28.0	15.6
32.0	14.5
36.0	13.8
40.0	13.3

Draw table including values $\frac{y}{x}$ and xy.

- c) Plot a graph of y against $\frac{y}{x}$.
- d) Find the slope, S, of your graph.
- e) Read and record the intercept, y_0 on the y- axis.
- f) Find the value of, f_2 from the expression,

$$f_2 = \frac{S + y_0}{2}$$

g) Find the average value, f, of f_1 and f_2 .